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Fig. 1. Multiple Sources of Uncertainty in the Data and ML Pipeline

Machine learning (ML) systems are developed and deployed for a broad range of tasks, informing
decisions in domains from healthcare [7] to hiring [21]. These systems aren’t used in isolation; they
are part of larger social systems and are subject to interpretation by a wide range of stakeholders
[22]. In these complex socio-technical settings, presenting model outputs without appropriate
contextualization can impart undue authority onto the model. Indeed, recent work has shown
that simply receiving model recommendations on their own [10, 11, 16]—or even with generically
visualized metadata and explanations [2, 6, 20, 25]—can lead to over-reliance, wherein users come
to rely on the decisions of automated systems over their own expertise. This can be quite harmful—
models may suffer from underspecification [8], overconfidence [12], or discriminatory behavior
[3], requiring careful consideration rather than dependency. More broadly, simply deploying black
box models can discourage affected stakeholders to question or push back on model decisions.

ML systems are the product of complex processes, from data collection and annotation to model
building and deployment—each of which can introduce forms of uncertainty into the final output.
Communicating this context is key to combating the false sense of authority afforded to ML systems.
We posit that comprehensive, intuitive communication of a model’s uncertainty is a critical tool
both for building effective trust (i.e., helping users know when to trust the model and when to
rely more on their own judgement) and for enabling contestability (i.e., by making model outputs
less authoritative and empowering affected stakeholders to push back on them). Work in ML has
included developing models that better quantify their own uncertainty [15, 19] and has framed
uncertainty as an important facet of model transparency [4]. Still, there is a large gap between
computing uncertainty and communicating it in a way that is relevant and understandable to users.
Our work is aimed at this gap, exploring how and what uncertainty measures should be presented
to different stakeholders.

We draw from other domains to explore these questions—most relevantly, uncertainty communi-
cation has a rich history in the data visualization research community. But the scope and nature of
this work is still limited to a particular framing of uncertainty; in seeking to effectively communicate
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and understand uncertainty to reduce ambiguity, some information about its underlying nature is
lost. When uncertainty is presented visually, it is often through a singular, cumulative encoding,
such as in the height of an error bar or boxplot [17], an animation [1, 9], the width of a line chart’s
ribbon [18], or text and glyphs on or near a graph [5]. The nature of these visual artifacts hints at
the balancing act visualization authors face in communicating uncertainty—they must weigh the
relative trade-offs of a graph’s comprehensibility with the desire to communicate nuance. These
binned encodings are visually simple not just for readability, but also due to the uncertainty we
as a community have focused on: total uncertainty, a quantified, numerical value representing
an apparently complete measure of data’s ambiguity. Yet as Kale et al. [14] describe, the “drive
to reduce uncertainty can lead to unwarranted expressions of certainty, which has consequences for
decision-making individually and at an organizational level.”
While its communication is a place of ongoing research in both ML and in data visualization,

uncertainty is complex, multifaceted, and not always quantifiable [23], an issue further complicated
when the uncertainty is heterogeneous—with multiple sources of ambiguity contributing to its
composite. Yet heterogenous uncertainty is common, and may warrant unique treatment based
on stakeholders’ needs [13, 24]. Here we begin to explore, through illustrative examples, how 1)
different sources of uncertainty and 2) different stakeholders of machine learning systems require
different visual representations of uncertainty.

Disentangling sources of uncertainty: Scientific Analysis of Ocean Core Data. To explore the impli-
cations of different sources of uncertainty, we consider heterogeneous uncertainties introduced
during collection and analysis of a large, collaborative geological core dataset. The dataset is com-
posed of various modalities of data; we focus on the microspectral images of core rock samples.
These microspectral images, and their subsequent use, present many places where uncertainty is
introduced, including: several forms of collection bias; variable data quality in physical samples,
images, and various experimental results; uncertainty from statistical modeling and interpolation
methods; and even invisible minerals such as quartz, which are known to be present but are not
caught through hyperspectral analysis. The implications of these forms of uncertainty vary, and
often require distinctly different responses. For example, uncertainty that arises due to unfamiliar
textures present in the rock may warrant physical inspection and might be a source of great research
interest. In contrast, uncertainty due to random noise can be automatically accounted for. These
sources of uncertainty matter and may require disentanglement when visualizing model outputs.

Designing for different stakeholders: Diagnostic Decision Aids. To then explore how uncertainty
visualization needs might differ across stakeholders, we consider ML systems in healthcare contexts.
In recent work, we studied how ML recommendations were used in medical decision-making.
When presented with diagnostic recommendations for a series of chest x-rays, we found that both
radiologists and internal/emergency medicine (IM/EM) physicians were susceptible to incorrect
advice—and that this over-reliance effect was more pronounced for IM/EM physicians with less ex-
pertise in reading chest x-rays [10]. Visualizing uncertainty along with the model’s prediction could
be a critical tool for combatting over-reliance in this context. However, behavior differences amongst
physicians with different levels of task expertise suggests that there is not a “one-size-fits-all” ap-
proach. In other prior work, we describe cases where dental practitioners were shown varying levels
of model sensitivities based on experience [13]. There are several competing tensions when thinking
about stakeholder needs—for example, we might want to emphasize uncertainty to stakeholders
with less domain expertise who are more susceptible to accepting incorrect advice; at the same
time, these users may also be more likely to experience information overload if the visualization
is too detailed or comprehensive. In our work, we begin to enumerate and tease apart these tensions.
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Fundamentally, our work asks how and what uncertainty measures should be visualized in ML
systems. We use a series of examples to explore how to visualize heterogeneous uncertainty to
different stakeholders, with the long-term aim of enabling appropriate trust and contestability in
these systems.
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