
Emergent world representations: Exploring a sequence model trained on a synthetic task.

Kenneth Li, Aspen Hopkins, David Bau, Fernanda Viegas, Hanspeter Pfister, & Martin Wattenberg

Game of Othello As Toy Model

Legality is nonlinear function of board state and the board state is a nonlinear function of the moves.

State-space complexity (number of unique states): <10^28 Game tree complexity (number of leaves): 10⁵⁸

→ E3, D3, C3, ... → 32, 26, 18, ... → 60 x 512 Word Embeddings

Othello-GPT

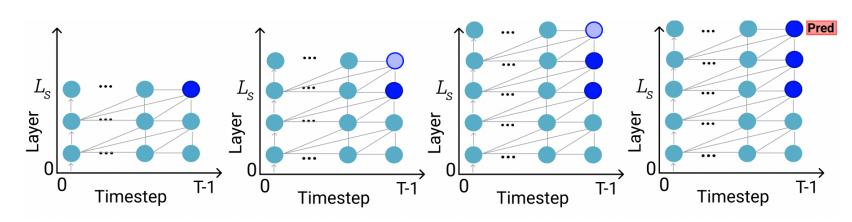
Trained separate 8-layer, 8 attention-headed GPTs on:

- 1) World championship dataset (132k games), &
- 2) Synthetic dataset (20m games)

Evaluation on games in held-out validation set—whether the top prediction is illegal given game rules, e.g. our error:

- *Trained on synthetic dataset:* 0.01%
- Trained on championship dataset: 5.17%
- Untrained: 93.29%

Probing Othello-GPTs

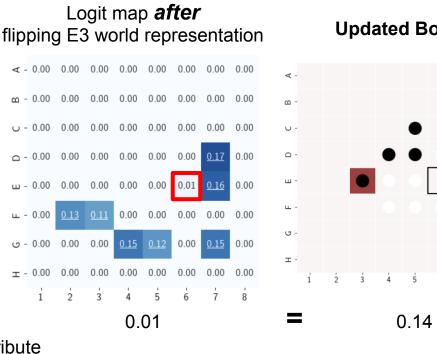

For each square **s** on the board, can we train a simple classifier f_s , such that $f_s(x_i) = \{$ white, black, empty $\}$ (where x_i represents the value of concept C in the input) reflecting whether s is white, black or empty?

Error rates of linear probe across different layers								
	x^1	x^2	x^3	x^4	x^5	x^6	x^7	x^8
Randomized	26.7	27.1	27.6	28.0	28.3	28.5	28.7	28.9
Championship	24.2	23.8	23.7	23.6	23.6	23.7	23.8	24.3
Synthetic	21.9	20.5	20.4	20.6	21.1	21.6	22.2	23.1
Error rates of nonlinear probe across different layers								
	x^1	x^2	x^3	x^4	x^5	x^6	x^7	x^8
Randomized	25.5	25.4	25.5	25.8	26.0	26.2	26.2	26.4
Championship	12.8	10.3	9.5	9.4	9.8	10.5	11.4	12.4
Synthetic	11.3	7.5	4.8	3.4	2.4	1.8	1.7	4.6

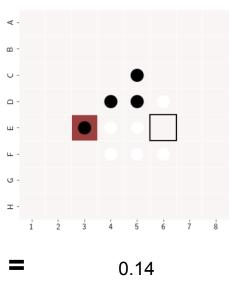
Intervention Technique

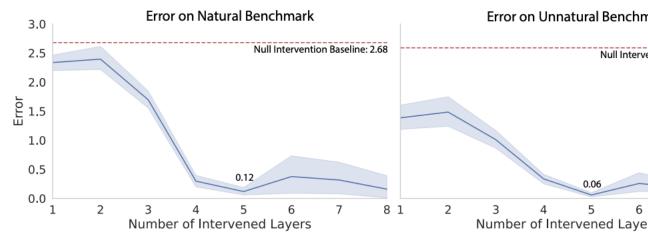
An important question: are representations found through probing meaningful & causal? To answer this, the representation must meet the following requirements:

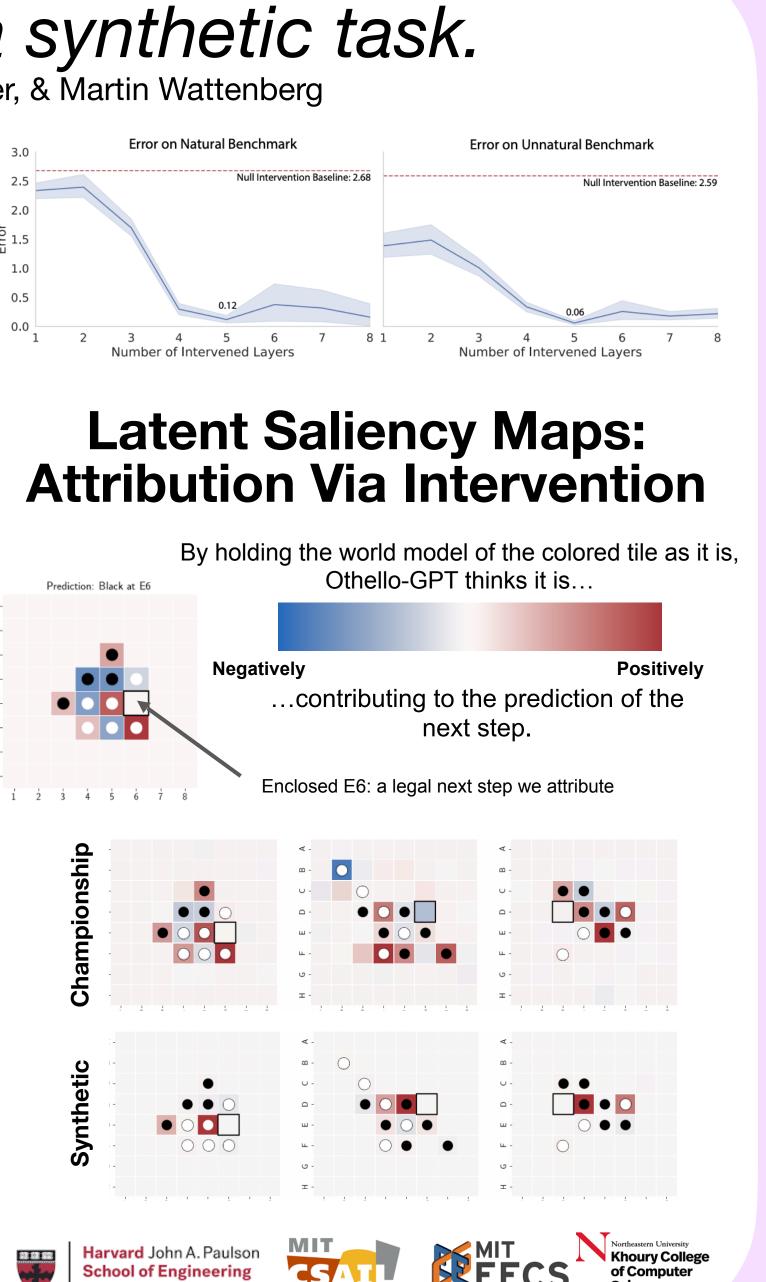
But how can we control the representation?



We can replace original internal representations with a post-intervention representation!


Pause, hack, put-back (& continue).


Logit map **before** flipping E3 world representation ш - 0.00 0.00 ц - 0.00 0.00 <u>0.14</u> 0.00 0.00 0.00 0.00 0.00 • - 0.00 0.00 0.00 <u>0.14</u> <u>0.15</u> 0.00 <u>0.14</u> 0.00 1 2 3 4 5 6 7 8 0.15 : E6, the square we attribute


- Interpretable: Understandable by a human, and related to human models of the same situation
- *Controllable*: Changing the representation changes the output of the system in a predictable way

Updated Board

